7" AD=AO44 200 RAND CORP SANTA MONICA CALIF F/6 17/2
INTERPROCESS COMMUNICATION EXTENSIONS FOR THE UNIX OPERATING SY==ETC(U)
JUN 77 C A SUNSHINE rnoazo-'n-c-ooza

R=2064/1=AF

UNCLASSIFIED

END

DATE

[Owa77

DOC




"m 10 &I s

el £

§30

||||| o=l
=

. 2
22 Tt e

Iz
O

MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU OF STANDARDS-1963-




R-2064/1-AF

June 1977
N
N

ADAD44200

Interprocess Communication Extensions
for the UNIX Operating System: 3
|. Design Considerations Y

Carl Sunshine

C
D »Dr\"\ e
[ass
S

[FaBie :
A Project AIR FORCE report B r&
prepared for the -c :

United States Alr Force

-'-"

z

= s RN R

' BETRBUTON S
'—"_v .4 for p¥ c 1er
' . x ied
E Appch')"x'\“u'\kon h{‘-.l)l._.:_
152 ke SANTA MON'C..A (.kdm

=




The research repédrted he’re was sponsored by the Directorate of Operational Require-
ments, Deputy Chief of Staff/Research and Development, Hq. USAF under Contract
F49620-77-C-0023. The United States Government is authorized to reproduce and
distribute reprints for governmental purposes notwithstanding any copyright nota-
tion hereon.

Reports of The Rand Corporation do not necessarily reflect the opinions or policies
of the sponsors of Rand research.

Published by The Rand Corporation




UNCLASSIT ]

SECURITY CLASWUFICAYION OF YHlS 6-AGE WY en Date Fntored) 4
) g READ INSTRUCTIO?
REPORT CCCUMENTATION PAGE ’ nﬁFOREcuuvrhﬂNgi%RM
1. REPCGRT NUMLER lz. GOVT ACCI55I0N NOJ 3. RECIFIENT'S CATALOG NUMEBER
lLII R-2064/1-AF L = |
=" T4 TITLE (and Subtitia) __ |5 TYPE CF REPORT A PERIOD COVERED
{ Interprocess Cemmunication Extensions for the / Interim e
o , > ) ‘
UNIX Operating Systemd” I. Design Cons1d_ratwon\.s.pERFORmNGORG.REhoaTNU“BER
7. AUTHOR(s) 8. CONTRACT OR GRANT NUMESER(s)
/) Carl A,/Sunshine f { }S:"F49620-77-C-0023 I
.4l’. =
9. PERFORMING ORGCANIZATIUN NAME AND ACDRESS 10. PROUGRAM ELEMENT,. PROJECT, TASK

The Rand Coropration AREA & WORK UNIT NUMBERS

1700 Main Street
Santa Monica, Ca. 90406

11. CONTROLLING OF FICE g;me_ AND ACDRESS 1 1 )
Project AIR FORCE Office (AF/RDQA) ‘ June W77
Directorate of Grerational Requirements e

RAUMBER of PAGE.)

b it o

UNCLASSIFTED

Hq USAF, Washingten. D.C. 20320 31 (= S
14. MONITORI!NSG ASENCY HAME & ADDRESS(/! 1iiterent from Centrolltng Ollice) 15. SELUPITY‘B&!SJ (ol this repo®®)

15a. DZCL ASSIFICATION SCWNGRAD'NG
SCHEDULE

16. DISTRIGUTION STATEZWENT (of this Rezoct)

Approved for Public Release; Distribution Unlimited

17. CISTRIBUTION STATEMENT (of the abatract orterec in Biock 20, if d!fferent [rom Report)

No restrictions

12. SUFPLEMENTARY NCTES

T [ £Y n.,Rf"b rCentine on reverye olle i’ :.;c‘COkltlY r:x(-"_;':hn!.'ly by tlock cumber)

Data Processing Operating Svstems {Computers)
fData Transmissd Lnterproa“ss Comriunication
Computer Ivsicns Froqgrans

Cndénq Theory

.
5]
e

o mme ey s A R Al 118 BN S A M S RO Ao SR LTETS
-“ FCbes L -
‘J;‘} t JAm 7 G ) ELTION O WOV 05 (L QBYQLETE

CECTOIT Y L ALSIEIC At tis AT THIE SAGE rFien oara Lolers

DL L T P DTN A T




I CUNCLASSIHIED

SECURITY CLASSIFICATION OF THIS PAGE(When Data Batered)

——- The UNIX operating system for the PDP-11 series
of minicomputers has gained wide popularity in
academic and government circles. This report
considers interprocess communication {(IPC)
facilities with the goal of developing an im-
proved IPC capability for UNIX. An outline of
the major issues involved in providing IPC is
developed based on a survey of the literature,
and UNIX IPC facilities are descriped in terms

of this outline. By considering new applications
being developed under UNIX, several shortcomings

| in the standard IPC facilities are identified,
including the inability of "unrelated" processes

L tc communicate, the inability to wait tfor multiple
i inputs, and primitive synchronization facilities.

E Techniques to provide desirabie improvements ara

suggested, including named poris, MCS5&G0 Suiis,

| imeroved signa’s, and message facilities. Ports
| appear to have the highest benefit/cost ratio,
and their impliementation is descripced in a
companion report, R-2064/2-Ar. . (Author)

———— - R—
UNCLASSIFIED

SCCURITY CLASSIFICATION OF T=15 PAGEYhen Dute Eatera !

B T P R T B




R-2064/1-AF
June 1977

Interprocess Communication Extensions
for the UNIX Operating System: |
|. Design Considerations

Carl Sunshine

A Project AIR FORCE report
prepared for the
United States Alr Force

Rand
SANTA MONICA, CA. 90406

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED




B e L -y . -

- = { Rl
B T P P R R A S




iii

The UNIX operating system for the PDP-11 series of minicomputers
has gained wide popularity in academic and government circles.

Under the Project AIR FORCE (formerly Project RAND) study effort
"Information Sciences Research," The Rand Corporation is engaged in
analyzing, evaluating, and developing computer operating system
concepts with UNIX. Recent work has dealt with such topics as
security, file systems, performance, user interfaces, network access,
and office automation.

This report, together with its companion report R-2064/2-AF,*
describes the current state of work in the area of interprocess
communication. A reasonable familiarity with UNIX is required to
understand some detailed points, but sufficient background material
is presented for the reader with a general knowledge of operating
systems to follow the discussion. The report is aimed at computer
system analysts and researchers concerned with operating systems
supporting multiple processes, particularly for interactive
applications.

* Steven Zucker, Interprocess Communication Extensions for the

UNIX Operating System: II. Implementation, The Rand Corporation,
R-2064/2-AF, June 1977. B

R L -

P I S L e R B




L

SUMMARY

In developing new applications for the UNIX operating system,
several shortcomings in the standard interprocess communication (IPC)
capabilities have become apparent. To fully understand these
problems and to develop effective solutions, a study of IPC
techniques, including a survey of existing implementations, was
undertaken. Cooperating processes within a computer operating system
need to communicate for two main purposes: data transfer and
synchronization. In general, port-like facilities are provided for
transfer of streams of data, while semaphore or signal type
primitives provide for synchronization. Message facilities share
features of both data transfer and synchronization.

To provide a framework for discussion, Sec. II presents an
outline of important features that any IPC system must include. The
main points of this outline are connection establishment, resource
allocation, functions available, receiver unblocking, and relation
with other input/output. Section III describes the standard UNIX IPC
facilities, pipes and signals, in terms of these features.

Section IV identifies major shortcomings of the standard UNIX
IPC facilities by considering several developing applications, such
as teleconferencing, network access, and user agents, that would
benefit from improved IPC facilities. Most notable shortcomings
are the inability to wait for multiple inputs, the inability of
"unrelated" processes to communicate, and the primitive signaling

facilities (see Table 2). A set of potential techniques for

L% 4 il ¥ o N A L I e T R R i TN I P




vi

improvement is also developed in the course of this discussion.
Section V elaborates these techniques, including named ports,
message ports, improved signals, and message facilities that
might provide desirable new capabilities. Named ports allowing
communication between unrelated processes and/or message ports
identifying the source of potentially multiple inputs to the port
appear to have a high benefit/cost ratio. Implementation of such a
facility is described in a companion report R-2064/2-AF.* Several
attractive improvements to synchronization primitives have also been
identified, but further research is needed to finalize an
implementation plan in this area.

* Steven Zucker, Interprocess Communication Extensions for the
UNIX Operating System: II. Implementation, The Rand Corporation,

R-2064/2-AF, June 1977.

A R L L R T ) .'“-" .y

il s o s Ml s Yo




vii
CONTENTS
202801 (0l D ST N o W RTab NG v A0 AP0 o B R e GO IR RN o8 e B8 5 R iii
SUMMARY .« v s s seisl e a osal el s aad s 2l 3ol s 1t o) s e Al el a5 5 8] &l v
Section
T.: ENERODUCTETON. . o e v s e bl sl o stiehis i s il o sas falin, it s fofion s sal 1
368 B 5 o 1o T B 1 2 i il S e i e 6 Sl e et e e 3 ]
Connection Establishment................. ... ....... 3 |
Resonrce ALLoCatTon o aiodoicle s s asielaiaisn s s sisoisimie s s 5 |
Functions Available........ ... ... ... ... 6 j
Receiver UnDloGKIIE s s o oo setaiats Siast & eirta s o st s o 7 |
Relation of IPC to Other I/0......... ... ... .. ... 8
ELE . CURRENTSUNEX TPC: .o o dol oloieilche o siaie Ssiel witmse e o il 10
Connection Establishment............. .. ... ......... 10
Resource Allocation....c.ccevvonvsnrvocoosacnssmnss 11
Functions Avallabliel o i s i iseisos i an oo 11
Receiver UnbloCRINE. « oo cn e o s o e eisnems s s es 12
Relation of IPC to Other I/0........... ..., 13
IV. SHORTCOMINGS OF CURRENT UNIX IPC...............cu.... 14
TeleCONECTONCIIR o o s « viv v wio o wis o s sia oo sioe o s o s % ww sioias 14
ARPANET Software and Well-Known Processes.......... 16
REBA - il ot ol s o = 8 dar o s hehe ot e 5 roatoo) 5. s s e 17
V. PROPOSED IPC MECHANISMS FOR UNIX..................... 19
Message PoOBESi. i o duli sk i siseis s s s o sis v ns el e b e 19
Interrupt on FiEst Write. .. vew e ueesmweaensssss 20
G R S e s R o e S e N R T T e 21
Improved Sugnalls ool S S e tio s vim e b s s o saee e ae 21
New "Post'" Mode of Signal Processing............... 22
SEMAPHOTLES - v s s b0 v o swos miw s oo 60 m s St s o sl ol o118 01551 w56 24
Simple Message Facility............ ... iiiiiiinnnn 24
More Powerful Message Facility..................... 25
NE = CONCDUSTEONA 1% Bt Sl s S B o iRl ose o oo s e 27
REEERENGES ¢ o o7 cviv oe s o v e susnt wie o) wiycsizeile et el ohis oo s o, 6 e o 1w 0 90 6 o 29




v

T P

ZC

I. INTRODUCTION

The UNIX operating system for the PDP-11 series of minicomputers
has gained wide popularity in academic and government circles. This
report considers interprocess communication (IPC) facilities with the
goal of developing an improved IPC capability for the UNIX operating
system [1]. A reasonable familiarity with UNIX is required to
understand some detailed points, but sufficient background material
is presented so that most of the discussion should stand on its own.

To see where UNIX stands in relation to other operating systems

and to appreciate alternatives, existing IPC facilities were

surveyed. Section II presents an outline of the major issues
involved in providing IPC capabilities. The discussion focuses on
functional capabilities and implementation approaches rather than on
theory (i.e., developing a formalism to represent IPC). Issues are
discussed at a fairly general level for brevity, although the
references cited provide more detailed examples.

The remainder of this report applies to UNIX more specifically.
Section III describes the current UNIX IPC capabilities in terms of
the outline developed in Sec. II. Section IV explores some proposed
applications (such as teleconferencing and network software) that
would benefit from powerful IPC capabilities, pointing out the
shortcomings of current mechanisms, and identifying additional
capabilities that would be desirable. Summaries of current
shortcomings and desirable additions appear at the end of Sec. IV.

Section V presents several mechanisms that might be used to extend




UNIX IPC capabilities in the desired directions and begins the
process of evaluating alternative techniques. A matrix showing the
capabilities provided by both current and proposed mechanisms ends
the section.

Assuming that a multiprocess environment is provided by the
operating system (process creation, scheduling, protection), IPC

facilities serve two main purposes: synchronization and data

transfer. Depending on which of these functions is paramount, I[PC
facilities typically take different forms. Synchronization may be
provided by P and V semaphores [2], BLOCK and WAKEUP (3], WAIT and
SIGNAL [4,5], EVENT FLAGS [6,7], software or pseudo-iuterrupts [8,9].
Bulk data transmission is typically provided by shared segments
[6,10], or PORTS [5,6,11,12] which allow READ and WRITE commands much
like normal files. The distinction between these two applications is
never complete, since synchronization primitives can be used to
transmit data (Morse code at least), while the presence or absence of
data can be used for synchronization purposes. Between these
extremes is a class of techniques such as MAILBOXES [5,7,10,13] and
MESSAGE QUEUES [6,14,15] which combine reasonably convenient data
transfer and synchronization. The following section identifies the
important components of these IPC techniques, although some

considerations apply most clearly to a limited class of techniques.




II. ELEMENTS OF IPC

This section outlines the important considerations in designing
or understanding an IPC facility. The outline presented below is by
no means the only possible organization for analyzing IPC systems,
and an author with different background or purpose might well produce
a different one. Nevertheless, the following five areas represent

one attempt to impose order on this highly multidimensional topic.

CONNECTION ESTABLISHMENT

For both data- and synchronization-oriented systems, the range
of other processes that a given process can communicate with is of
interest. In systems with rigid process hierarchies (e.g., tree-
structured), communication is typically limited to processes with a
common ancestor. In other systems, any process is a potential
communication partner.

In either case, the ability to learn a partner's identity is
fundamental. Certain important processes or services may have
"well-known" or fixed names. To communicate with a dynamically
created process, however, the name of the process must be implicitly
available (e.g., to a creator process), or must be explicitly
requested through some system directory facility (perhaps itself a
well-known process). The name of the communication path may be an
actual process name, a PORT name that must be associated with a

process as part of IPC setup, a buffer address, a "communications

area'" address, etc.




More than one process may be allowed to produce, test, or
consume on a connection. MAILBOXES are typically many-to-one, while
MESSAGE QUEUES and event channels are many-to-many. PORTS may be
one-to-one or many-to-many. SIGNALS may affect a particular process,
an arbitrary single waiting process, or all processes waiting for a
given condition. In many-to-many implementations, the identity of
participants may be known (e.g., source and destination in messages)
or may be invisible. Source identification serves at least three
purposes: distinguishing inputs from different sources when this is
desirable; providing a name for return communication, and providing a
name for authorization checking. A single ID does not necessarily
serve all three purposes, so multiple IDs may be desirable.

Communication paths may require explicit creation (e.g., binding
ports to processes) or may be implicitly associated with processes
(e.g., signals). Paths may provide only one-way (simplex)
communications, two-way (duplex) communications, or simplex with
reply capabilities. In the latter case, replies may return results
(function call type interaction) and provide status information
(acknowledgment of receipt for reliability or synchronization
purposes).

Authorization for communication may be implemented by
controlling the acquisition of names (i.e., the name itself serves as
a capability and knowing a name guarantees ability to communicate),
or names may be public with other (or no) means of access control.
Whatever the entity named, the acquisition and authorization of the
name must occur before communication can proceed. Authorization may

occur once when a connection is explicitly opened, or on every

- vanes

~ “itaghaiier




—————

communication if there is no permanent connection established.

In distributed systems the identity of a partner must include a
location. This location may be specified by the source, or
determined "automatically" by the system (in which case the IPC
supports '"location independence'"). In a monolithic system, all
routing is done by a single switch so location is not a factor.
Connection establishment in distributed systems frequently includes
agreement on other mechanisms such as explicit error and flow control
in addition to names. Therefore IPC with remote processes often
presents a different user interface than local IPC, although some
systems have taken pains to make them appear identical.

Process termination normally includes terminating all
connections to the process as part of cleanup activities. Processes
may also be allowed to explicitly close connections or refuse
communication before their termination. This raises the questions of

how to handle any data sent by or to be received by the terminated

process. Other processes involved in the closed connections may be
notified of the termination immediately, or later if they attempt to

use the closed connection, or not at all.

RESOURCE ALLOCATION

Resource allocation for IPC is primarily a matter of buffer
allocation. Whenever queues (of data, signals, or process IDs) are
involved, either the source, the destination, the "owner" (e.g., of
an event channel), or the "system" must provide storage space. "Flow
control'" concerns limitation of source and destination activity so

that resources at both are not exceeded, while '"congestion control"




involves equitable allocation of system resources among multiple
connections to avoid hogging of storage space or processing power by
any one source and destination. Buffering of each connection
independently by the users eliminates the need for system resources
but precludes the statistical advantage of a common (system) buffer
pool. With event flags and some pseudo-interrupt systems, queuing is
eliminated altogether. Since only the occurrence or non~-occurrence
of an event is maintained, subsequent instances of the event need not

be queued.

FUNCTIONS AVAILABLE

As noted in the introduction, data-oriented IPC systems
typically provide READ and WRITE commands with a count argument.
Message systems provide RECEIVE and SEND commands, which perform both
data transmission and synchronization. These data transmission
commands may or may not block (cause the executing process to be
suspended) until they are satisfied by matching communication.

Blocking commands impose tighter synchronization so that

|
i
?

communicating processes essentially become coroutines. Non-blocking
commands are desirable to allow independent parallel activity by the
producer(s) and consumer(s) (subject to resource limitations
discussed above). However, non-blocking commands are substantially
more complex because they require asynchronous (delayed) notification
of status and identification of which command the reply refers to.
This notification may be provided by pseudo-interrupts or signals if

they are available as synchronization facilities.




Non-blocking commands require storage space to queue pending
requests (see above), while blocking commands may be said to queue
commands in time using the existing process suspension facilities

to queue waiting processes.

Synchronization is provided by WAIT and SIGNAL commands or
pseudo-interrupts. Interrupts force immediate attention, while
signals must be explicitly requested by the process when it chooses
(WAIT command). Of course, the WAIT command is designed to block
until an appropriate SIGNAL is generated. In systems with
preemption, the SIGNAL command may invoke the scheduler and result in
preemption of the signaling process if the signaled process has
higher priority.

Some systems provide a TEST command to indicate whether signals,
data, or messages are available. Polling with the TEST command can
partially overcome the limitations of blocking data transmission
commands, but this requires periodic testing or '"busy waiting," which
consumes processing resources.

Produce, consume, and TEST commands may operate sequentially (on
the next item available), randomly (on any item), by priority of
available items, or selectively (allow specification of a particular
type of item). The type of an item may be implicit (e.g., which of
many event channels the item is stored in) or explicitly stored as a

field in each item (e.g., the source process or message type).

RECEIVER UNBLOCKING

In data-oriented IPC, a RECEIVE or READ command normally returns

when it is "satisfied." 1In stream mode, the consumer specifies the

B k]




amount of data (byte count) that must be available before the command

is satisfied. In message mode, the command is satisfied at a

producer designated point (the end of the message), although the

receiver also specifies an upper limit (buffer size) for data
transfer that satisfies the command even if a complete message has
not been received.

Stream mode is appropriate when data are to be interpreted as an
infinite stream of bytes and the producer has no special knowledge of
logical unit size. Message mode is highly desirable when data
consist of variable length logical units so the producer can initiate
processing at the end of each unit. Message separation is implicit
for fixed length messages, or may be implemented with a length field
prefix (header), or a special end-of-message character suffix in the

data stream for variable length messages.

RELATION OF IPC TO OTHER I/0

In addition to explicit IPC, processes interact with their
environment via files and interrupts. Files typically correspond to
data-oriented IPC, while interrupts correspond to synchronization.
To unify these types of interaction with IPC, systems have attempted
to make IPC "look like" files and/or interrupts, or have made files
and interrupts look like IPC (e.g., messages to a file handler or
"external" process, or interrupts converted to messages). As noted
above, interaction with remote versus local processes in distributed
systems may also be handled either uniformly, or with distinct
interfaces. Unification of file, interrupt, and remote process

interaction provides a great deal of flexibilty (e.g., a process can

S Y LR EENE




substitute for a file) but may require additional work by the

"system" in converting uniform process commands to appropriately

control interaction with different elements of the environment.




10

111. CURRENT UNIX IPC

This section describes the current UNIX IPC facilities in terms
of the general considerations developed in Sec. [I. UNIX provides
two facilities that directly support IPC: pipes and signals. Pipes
are essentially files used for data transfer between processes, while
signals (the KILL and SIGNAL commands) allow processes to cause

pseudo-interrupts and to specify their handling.

CONNECTION ESTABLISHMENT

Pipes can only be used between processes with a common
cooperative ancestor (FORKed processes) that sets up the pipes.
Signals can only be transmitted between processes owned by the same
user (normally also common descendants). No other access controls
are imposed or available on IPC. The file descriptor for a pipe must
be passed to created processes. The identity of processes to be
signaled must be known to the signaling process (returned by FORK
command). The ARPANET software (NCP, TELNET) provides for data
transfer and synchronization with remote processes and potentially
also with unrelated local processes, but the cost of network
connections effectively precludes their use for local IPC.
Theoretically, a named file could be used by arbitrary unrelated
processes in the same way as a pipe, but the file might grow very
long, and readers would receive an end of file (EOF) instead of
blocking if they got ahead of writers. The creation and deletion of

well-known file names are also used for mutual exclusion in some

“ WSS b aMAna e NG et L

————




11

cases (e.g., printer assignment).

Multiple processes may read or write on a pipe if so initialized
by their creator. The identity of producers is not preserved, and
data from different WRITES may be interleaved. Hence a pipe is not a
reliable multiplexer of input data unless producers synchronize their
activity by some other means.

Pipes (and other files) are closed when a process terminates,
and may also be closed explicitly by the process. Writing a pipe
with no readers causes an error, while reading a pipe with no writers

returns an EOF.

RESOURCE ALLOCATION

Buffer space for pipes (and file I/0) comes from a common system
buffer pool. As blocks are filled by a producer, they may be written
to disk until consumed. As a means of flow and congestion control,
the producers are blocked when they have written 4096 bytes until the
consumers catch up, at which point written blocks are freed and the
pipe is reset. (At Rand, pipes are reset whenever the consumer
catches up with the producer.) For signals, resource allocation is
trivial, since the last signal received is stored in a single
location for each process. Any previous signals are lost (not

queued).

FUNCTIONS AVAILABLE

Pipes provide simplex stream data transfer between processes.
The READ command blocks until data are available (see below). The

WRITE command blocks only until data are transferred into a system




buffer and there is no status returned to indicate whether the data
were successfully received by the consumer. Standard UNIX provides
no TEST command for pipes, but Rand has implemented the EMPTY
command, which returns a Boolean value indicating whether a READ of
the pipe would block (but no information is given on the amount of
data in the pipe).

Pseudo-interrupts to a particular process may be caused by the
KILL command. The processing of these signals may be set using the
SIGNAL command to ignore, default (kill process), or a special
handler routine for each type of interrupt. For most signal types,
processing is reset to the default mode whenever a signal is received
(but may be reinstated by an interrupt handler). The identity of the
signaler is not available to the signaled process. The number of
legal signals is a system generation constant. Currently about 7
signals are available for general use, while 13 have standard
meanings. Since signals are not queued, there is no TEST command
applicable to signals. A process cannot detect that a signal has
been lost because of the occurrence of a more recent signal. An
unfortunate side effect of signals is the abortion of certain types
of kernel functions in progress when a signal is received.
Preemption occurs if the signaled process has higher priority than

the signaler.

RECEIVER UNBLOCKING

In a normal pipe (or file) READ, if some data are available, the
command returns with the requested number of bytes, or all the

available data, whichever is smaller. Hence the READ may be

DR O P T N I LR T D L




13

satisfied by several smaller WRITE commands, or part of one larger
WRITE. The boundary between WRITEs is not preserved, and there is no
way for a writer to force completion of a READ (i.e., write an EOF).
If a pipe is empty, the READ blocks until completion of the first
WRITE.

If a pipe is not open for writing by any process, READ returns
an EOF condition. Rand has added a command to "write" an EOF (causes
EOF condition when a READ is executed) without closing the pipe.

This command was added to allow a pipe to function like a teletype,
which can cause zero characters (an EOF) to be "written.'" This
pseudo-EOF could also be used to facilitate message mode operation on
pipes where a large READ request would be satisfied at a

producer-specified point.

RELATION OF IPC TO OTHER I1/0

Pipes, device I/0, and files are purposely designed to look as
much alike as possible, allowing simple substitution of one for the
other in almost all cases. A few minor differences we have noted are
(potential) universal accessibility of files versus the hierarchical
access to pipes, the 4096 byte write-ahead limit on pipes, and the
peculiar characteristics of teletype '"files." Data exchange with
remote processes on the ARPANET is also achieved by READ and WRITE
commands to pseudo-files that have been appropriately opened (network
connection establishment). Hardware interrupts (instruction traps)

are converted to standard signals, allowing common handling of

hardware, system, and IPC signals.




14

1V. SHORTCOMINGS OF CURRENT UNIX IPC

This section tries to identify the shortcomings of current UNIX
IPC capabilities by considering several example applications that
would benefit from improved IPC facilities. Such additional IPC
facilities are outlined, while the detailed proposal of techniques
to implement them is left to Sec. V. Summaries of current
shortcomings and desirable additional capabilities appear at the

end of this section.

TELECONFERENCING

A prototype teleconferencing system has been developed to allow
simple real-time interaction between UNIX users. Basically, the input
from each participant in the conference is copied to a conference
manager process for display on other participants' terminals. Ideally,
the manager should be sleeping while it awaits input from any of the
participants.

This is currently difficult because: !(l) if the data arrive via
multiple pipes, it is only possible to READ and wait for one pipe; and
(2) if the data arrive via a single pipe, the manager will wake up on
any arrival but cannot determine the source of the data. A solution
for (1) is to allow non-blocking READS (so multiple pipes could be
read) and/or interrupts on the arrival of data in an empty pipe. (If
multiple processes have the pipe open for reading should they all be
interrupted?)

A solution to (2) is to create a new sort of pipe (a "message

-

L P —




port"), where the source of data 1s id?nlifivd. This changes the
character of pipes from stream to message, with each chunk of data
written (each message) preceded by a header giving source process [D
and length. For writing, a message port would be identical to a normal
pipe. In reading a message port, the reader would receive the source
identification along with the data. Further details of this mechanism
are discussed in Sec. V.

In addition to data inputs, the conference manager also receives
control commands from conference participants (e.g., show status, add
participant, quit). These commands often deserve prompt attention and
should not flow over the same path as normal input data. Signals
carrying a small amount of data would handle this function nicely.
Otherwise, commands and data would have to be mixed on a single input
path, requiring some special format to differentiate them and possibly
delaying commands behind data.

In general the conference manager or other processes may want to
specify more co:uplex activation conditions than the OR of several data
inputs (e.g., including time events, signals from other processes or
AND of conditions). This suggests supporting general Boolean
expressions for activation conditions. As a minimum, improved
signaling facilities are needed (e.g., avoiding loss of signals,
identification of signaling process, more signals available, not
aborting system functions in progress). This may require substantial
system changes. The ELF system [5] provides a good example of a
flexible IPC signal system. More simply, event flags for each type of

signal may be adequate if multiple occurrences of the same signal are

unimportant.

£ Wb A N . COTI I R I R P R R e e |




16

ARPANET SOFTWARE AND WELL-KNOWN PROCESSES

A recurring situation in network processing (e.g., TELNET, File
Transfer Protocol) is the need to listen for input from either user(s)
or the network. As noted above, it is not possible to have a READ
pending on both the network and user inputs, resulting in various
awkward ways around the fundamental dilemma. Message ports present a
partial solution to this problem.

Another possibility for network processing is to make the NCP at
least partially a user process. Although problematic on efficiency
grounds, this allows network development and debugging to go on without
impacting other users of the system. Only the fixed IMP device driver
would remain in kernel code. If the NCP were a process, other
processes might access it via pipes. This would require establishment
of pipes between unrelated processes (e.g., user TELNET and NCP), which
is not currently possible. A facility for naming pipes, which would

then be called '"named ports,"

might help to overcome this limitation.
A named port essentially uses the file system to allow creation and
reference to a named entity that would then be mapped to a normal
(or augmented) pipe facility. Ports would provide only one-way
communication, so a second port for return traffic to the user process
from the NCP would be necessary. Further details are presented in Sec.
V.

The assignment and distribution of port names for well-know
processes (e.g., NCP, line printer process) are non-trivial problems
demanding a good deal of thought. Association of ports with transitory

user processes (e.g., between two shells or screen managers to '"link"

teletypes) is even more problematic. Typically, some directory or




17

globally accessible system data base is used to maintain the

association of process or port IDs with well-known names (user IDs or

service types). For example, the TENEX "WHERE'" ccmmand returns all the

processes (terminals) currently active for a given user.

RITA

The Rule-directed Interactive Transaction Agent (RITA) system [16]
currently employs three processes, primarily to make additional memory
space available to the system (each process is mapped to its own 64K
virtual memory). The three processes essentially pass control among
themselves sequentially, although there are some cases where parallel
activity might be beneficial. Such concurrent activity would be
facilitated if processes could be waiting for inputs from multiple
sources (e.g., teletype and another RITA process). A large number of
one byte pipe transfers are done to synchronize RITA process activity.
A simple message facility or signals carrying data could simplify this
interaction. The ability to read a specified number of bytes (a
complete message) would also benefit routines that know the format of
their inputs in advance.

Tables 1 and 2 summarize some shortcomings of UNIX and some

desirable features not presently provided by the system.

T R T T T R R R T R —




18

Table 1

SUMMARY OF IPC PROBLEMS WITH CURRENT UNIX

Data Transfer (pipes):
o Inability to wait for input from multiple sources.
o No communication between unrelated processes.
o No source or type identification (sometimes this is
a feature, not a bug).

Synchronization (signals):
o Some pending system (I/0) functions are aborted.
o Signals can be lost (only most recent kept).
o No access control (besides same user).
o No communication between processes of different users.
o No source identification.

Message:
o No message facility.

Table 2
SUMMARY OF DESIRABLE IPC FUNCTIONS NOT CURRENTLY
PROVIDED BY UNIX
Minimum

o Ability to wait for multiple inputs.
o Reliable synchronization primitives (no lost signals).

Highly Desirable

o Ability to wait for (block until) the first of
many conditions (including pipe and terminal input,
timer, signals from other processes).

o IPC to well-known but unrelated processes.

o Identity of signaling process available to signaled
process.

o Some data passed along with signal.

o Simple message type IPC.

Ideal?

o Message IPC with source, length, and message type
available to receiver. Selective test and receive
capabilities. Messages queued (in space).

o Boolean expressions for process activation conditions.




19

V. PROPOSED LPC MECHANISMS FOR UNIX

In this section we outline the implementation of techniques to
provide the desirable IPC capabilities developed in Sec. IV. The
mechanisms introduced in Sec. IV (ports and signals) are described in
greater detail and some additional techniques are presented. A
complete description of an implementation of ports may be found in a
companion report [17]. We do not provide a complete evaluation of

these techniques, leaving that for further discussion; but

generality, ease of implementation, compatibility, and harmony with
the rest of UNIX have mo£ivated the selection of these techniques and
no doubt will be important factors in their evaluation. A summary of
capabilities provided by both existing and proposed UNIX IPC

mechanisms appears at the end of this section in Table 3.

MESSAGE PORTS
Message ports extend the normal pipe facility by adding a header,

providing source (process and/or user ID) and length information to

the reader. This allows a process to receive (and wait for) input

| from multiple distinguishable sources on a single pipe. Data

transfer also becomes more message-like than stream-like.

As noted above, writing on a message port is indistinguishable
from a normal pipe, while readers must know they are dealing with a
port. To read a port, a process would first read the header (fixed
length) and then the remainder of the message. Alternatively, a new
command might be implemented to return header information prior to or

in parallel with the normal READ. 1If multiple readers are allowed on




20

a port, other processes should refrain from reading until a complete
message is consumed by the current reading process. This constraint
must be enforced by the "system'" or by explicit cooperation between
the readers to ensure the integrity of header and message structure.
Message ports are a very attractive addition because they help
remedy a serious IPC deficiency at small implementation cost while
preserving the feeling of UNIX. Some problems remaining are sharing
a port between sources, and selective read access. For example, the
conference manager described in Sec. IV may receive a long listing
from one conference participant which fills the port, preventing
other processes from getting their output to the manager. Even if
other processes do get data into the port, the manager may want to
selectively read or test for the presence of data from a particular
process, rather than the first data in the port. This may be
performed by a (user) routine which reads a port and sorts its
contents by source (buffering in core or on disk), or may be provided
by the system. The former approach may be inefficient (extra data

transfers) while the latter requires substantial new system code.

INTERRUPT ON FIRST WRITE

As noted in Sec. IV, this would allow processes to wait for
multiple pipes by blocking themselves until interrupted by the first
WRITE on any empty pipe. Reliable operation requires improvement of
the signal system so interrupts are not lost and so pending I/0 is
not aborted if the process is not blocked (e.g., is reading another
input). It would also be convenient to pass the information on which

pipe caused the interrupt to avoid polling with the EMPTY command.




[
i
r

21

NAMED PORTS

Named ports are another extension to the normal pipe facility to
allow IPC between unrelated processes. As noted above, ports may be
implemented as named pipeé, using the UNIX file system to support
naming. This again uses existing UNIX facilities (pipes and files)
to maximum advantage. Ports may be based on the standard UNIX pipe
facility with only naming added, or may be based on an augmented pipe
facility including headers as for message ports.

Ports, like pipes, provide only one-way communication, so a pair
of ports must be created and names exchanged to allow two-way
communications. The creation, assignment, distribution, destruction,
and dynamic management of port names are non-trivial problems.
Protection and access control on ports would be provided by normal
UNIX file system facilities. For example, if the NCP process were
given a unique user ID, the ports it created could be protected from
group and other access as desired. Although this much protection

1

comes "for free," it is inadequate if process ID (rather than user

ID) or even more sophisticated protection seems desirable.

IMPROVED SIGNALS

To avoid loss of signals, the current UNIX signal memory could
be expanded from a single byte to a bit vector (one bit for each
possible signal). If the source of the signal is to be delivered,
then a word for each signal is required (zero if no signal, or
process ID of signaler). If priority signal handling is desired, a
priority list must also be maintained. These are relatively easy

changes, expanding the state space of each process by 2-64 words (for

-

B L R R D




22

32 signals). In the typical case where there are many processes, but
few pending signals, a single pointer for each process to a common
pool of signal buffers might be most efficient.

Creating an event queue for each process [5,13] or even general
event channels accessible to multiple processes [15] requires
substantial new system code, and some form of buffer allocation and
management for queue elements. Dynamic storage allocation for other
system functions may already be desirable and in the works, however.

Eliminating the abortion of pending system tasks (particularly
I/0) is a much more difficult problem, basically because UNIX
"system'" functions are performed by processes for themselves, rather
than by an independent "system.'" Part of a process' state during
system functions is saved in fixed locations (the u-structure), so
that a subsequent system call from an interrupt handling routine
would destroy the pending functions' state, making resumption
impossible. It should be noted that in some cases, an abort is
exactly what is wanted (e.g., interrupt during wait for keyboard

input).

NEW "POST" MODE OF SIGNAL PROCESSING

The current UNIX system provides three modes of signal
processing to the signaled process: ignore, user-supplied processing
routine, and default (abort process). If the user supplies a
processing routine (for each signal type of interest), certain system
functions in progress when the signal arrives are aborted before
entering the interrupt routines. The interrupt routine then returns

to user code with an indication that the system function failed.

R R R IR




23

A new "post'" mode of signal processing has been suggested where
the arrival of a signal would simply be "posted" and pending system
functions would not be aborted. No interrupt processing routine
would be invoked, but the signal type (number) would be placed in a
location for later examination by user code. Either a single
location, a single location per signal type, or a stack of locations
shared by all signals could be implemented. The posted signal could
be kept in either the u-structure (kernel space) or a user-designated
location. It would then be explicitly requested (and deleted) by a
system command or normal memory access, respectively. This would
provide a message type signaling facility (explicit request by
receiver) in addition to the existing interrupt type facility
(receiver's immediate attention forced).

Such posting of signals in its simplest form requires only a
small addition to the kernel KILL processing code (e.g., an addition
to the normal ignore code). The new mode would have to be encoded in
the signal processing specification vector, resulting in a minor
backward compatibility problem, since all possible signal processing
codes already have a meaning. Passing a small amount of data along
with the signal type (signaler's ID, subtype code, memory address,
etc.) might prove very useful. The main advantage of this "post"
signal mode is the transmission of the signal without aborting
pending I/0. The need to request the signal rather than being
automatically interrupted will be an advantage in some applications
and a drawback in others. It may prove desirable for a process to
switch a signal from post mode to interrupt mode and then block to

"wait'" for the signal when it has no more work to do.

i o R R




r — e —

24

SEMAPHORES

Kernel routines currently have available the SLEEP and WAKEUP
commands. SLEEP blocks a process (which is executing kernel code on
its own behalf) until awakened by another process with a specified 16
bit number. WAKEUP wakes up every process waiting for its 16 bit
argument (an exhaustive V). Awakened processes must test to be sure
the desired condition actually holds, since another awakened process
may have been scheduled first. This facility is typically used by
[/0 routines waiting for completion of started I/0. ;

These semaphore commands could also be made available to user
processes. However, access control would become an important
consideration, since it is probably desirable to limit which processes
can affect a particular semaphore and to assign unique semaphores for
use by a group of processes. With more general use, efficiency would
become a more serious concern, since currently all processes are
searched each time a WAKEU? is performed. With further modifications,

true semaphores could also be implemented.

SIMPLE MESSAGE FACILITY

A simple message facility based on the IDA system (18] has been
proposed by Stockton Gaines. Each process would have a small fixed
message buffer and a ready flag. The process sets the ready flag
when ready to receive. Any other process may test the ready flag, or
write to the process (optional blocking until receiver ready or
immediate return with error if receiver not ready). Writing a
message clears the ready flag (and may interrupt or wake up the

receiver). The system supplies the ID of the writing process to the

3 g o g—— L
¥io e o | PP ta . - " LR ves g i e NG e e




- T ——

25

receiver. Messages are queued in time (senders blocked) rather than
space (no message queue). Messages are written to a particular
process only. Multiple readers, message queuing, or broadcast
transmission might be implemented by an intermediary process.

Since the message size is short, this mechanism is primarily
aimed at synchronization rather than data transfer. Naming processes
is still a difficult problem as noted above. Access control is most
simply provided by the receiver discarding messages from unwanted
sources (proper identification guaranteed by system). Guaranteeing
equitable access among competing senders may be difficult. No
message types or selective RECEIVE is provided by the system, since

there is no message queue.

MORE POWERFUL MESSAGE FACILITY

A more powerful message facility with queuing (in space) of
messages, selective TEST and RECEIVE on the basis of source and/or
type, and small amounts of data can provide for very general process
interaction [5,13]. A process is free to write its own program for
message testing and reading. This type of facility largely overlaps
the signal facility discussed above, with the addition of some data
to each signal which may be very useful (e.g., identifying a pipe,
buffer, or file name). One difference is that signals (interrupts)
typically force immediate attention (unless processing is at a higher
priority), while messages are queued until explicitly requested by
the receiving process. Implementation cost of a general message

facility is likely to be high, since there is little foundation for

its attachment in the current UNIX system.

. : T — e

e aa, B b d Ve s b b K% w8 b habean e N e ]




I o . S AR

"SUOTIdUN] WAISAS Juipuad siI0qy

adrd (Aidwa) Aue 01 JLIYM P AQ pauademe aq [[1M Ing ‘SH20[q L;vtgmﬁ

PapPaadxa ST 11WIT 334q 960% J1 $HI01q ATUO J3dNPOdg
1dni1ajur ue sasned adrd Aidwa ue 031 FLIWM 5213 Y

| b | Tk W H H H H H Y naau g
H W i | g § 1 1 1 1 9 | (s3s
‘MOo] ‘umipaw ydry
310333 uoliejuawWaau]
3 4 d (%) ) 9 9 ) ) ;) A31714q13edwn)
J d 3 D) 9 d 9 d 4 9 L317PR13U8H
N N N N pA pA N N pA N $32a31312 13
) d d R) d d 9 v d 9 AIT119BT]A¥
i d d d ) 9 == L g -- sidnaaaiu
yitm L3taejuarg
d d e == islp & B d o o 0/1
3113 Yitm Ajtaeprurg
A N X R = == X A 5K x S$)J07q AdWNsuo’
N N/X N N N N qN gN qN qN - S$YJ07q A3dNpolj -
X N N ‘ i N N N N N p1213 adaj ‘.
X 5 N A ¢ N N/A A N N UOT3IBOTITIUAPT ADIN0Og ;
N N N N N N o ¢ X X saaunsuod A1dring
b3 X X X X A X X & A sa13onpoad ardriing y
1S o 1S é d/d b bg bg bg bg (3A139313s ‘A3taotrad .
Mw ‘wopuex ‘[eIIuand &,
-3s) A1TAT1D313S Deay t &
S 9 N 9/8 N N 9 9 2] 9 (3uou ‘yeI3UAT Mn,
‘3AT10313S) puPWWOD 1S3T ‘
d 1/d d d 1 1 d d ed 8 3sod 10 3dniaaluj vl
4 4 As As £s As as/a A s 1 (uo13EBZ1UOIYOUAS ‘Ades | 8
-Saw 3[qeraeA ‘aiPssau -
pax13y ‘weaals) adai 4] 3 w
é d ¢ ¢ ¢ == d 4 9 9 (100d ‘atey ‘poo¥) .
UOTIBDOTE ADINOSAY ¥
S 1 S 1/8 S W S S S S (JewiuLw °I3ST =
‘WAISAS) SPAAU ADINOSAIN 3
2 ¢ o) ) 2] 2) v o] i} (paiuadudne ' 1uaz ]
-Ind) 10a3U0d S$$IDOY
2 9 n/o n n n d v v v (1031$3DUE UOUWO> ‘Was
-SAS 3113 'aasn aues
‘1eqo13) PAMOT TP SSIIOY
(313) (var) $3ssado0xyg steudtg (0/1 Butpuag s{eudts ALdW3 yYata ALdWT Yitm JLI¥M 3ISITI  A1ldW3 $a1317119RAPD
adessal adessay 13s) 103 LSO 310qy 113§ Ing) 1ualan) $31104 pawey S1104 93essay uo 1dnaiajug yimm
[nizamod  Ardwis  gaIaNvA ‘43A1S syeudtg paaoxduy pue sadrg sadiyg
SWSINVHOEW Od1 @3S0d0¥d ONV INTIEND JO SIATLITIEVAVD i
~

€ °1qel




27

VI. CONCLUSION

Applications involving cooperating concurrent processes require
powerful interprocess communication facilities. Existing UNIX IPC
facilities have several weaknesses that have hampered the development
of such applications. Chief among these are the inability to wait

”"

for multiple inputs, the inability of "unrelated" processes to
communicate, and the primitive signaling facilities. This report
outlines several techniques for improving these weaknesses including
named ports, message ports, various improvements to signal facilities,
and new message facilites. Named ports allowing communication
between unrelated processes, and message ports identifying the source
of inputs to the port appear to have a high benefit/cost ratio and
have been chosen for initial implementation (see companion report
[17]). Several attractive improvements to synchronization primitives

have also been identified, but further research is needed to finalize

an implementation plan in this area.

PR YER P AANE A e NG e




10.

11.

12.

13.

29

REFERENCES

Ritchie, D. M., and K. Thompson, "The UNIX Time-Sharing
System," Comm. ACM 17, 7, July 1974, pp. 365-375.

Dijkstra, E. W., "The Structure of THE--Multiprogramming i
System," Comm. ACM 11, 5, May 1968, pp. 341-346.

Lampson, B. W., "A Scheduling Philosophy for Multiprocessing
Systems,'" Comm. ACM 11, 5, May 1968, pp. 347-360.

Habermann, A. N., "Synchronization of Communicating
Processes," Comm. ACM 15, 3, March 1972, pp. 171-176.

Retz, D. C., "Operating System Design Considerations for
the Packet Switching Environment," Proc. National
Computer Conf., 1975, pp. 155-160.

Bayer, D. L., and H. Lycklama, "MERT - A Multi-Environment
Real-Time Operating System," Proc. 5th ACM Symp. Op. Sys.
Principles, Austin, Texas, November 1975, pp. 33-42.

Wecker, S., "A Building Block Approach to Multi Function
Multi Processor Operating Systems,'" Proc. Computer Network
Systems Conf., Huntsville, Alabama, American Institute

of Aeronautics and Astronautics, April 1973, New York.

Lampson, B., et al., "A User Machine in a Time-Sharing
System," Proc. IEEE 54, 12, December 1966, pp. 1766-1774.

Thomas, R. H., "JSYS Traps - A TENEX Mechanism for
Encapsulation of User Processes," Proc. Fall Joint
Computer Conf., 1972, pp. 351-360.

Spier, M., and E. Organick, '"The MULTICS IPC Facility,"
Proc. ACM 2nd Symp. Op. Sys. Principles, Princeton
University, October 1969, pp. 83-91.

Balzer, R. M., "PORTS - A Method for Dynamic Interprogram
Communication and Job Control," Proc. Spring Joint
Computer Conf., 1971, pp. 485-489.

Akkoyunlu, E., A. Bernstein, and R. Schantz, "Interprocess
Communication Facilities for Network Operating Systems,"
Computer, June 1974, pp. 46-55.

Holmgren, Steven F., et al., Illinois Inter-Process
Communication Facility for UNIX, Technical Memorandum

84, Center for Advancea Computation, University of
I1linois (at Urbana-Champaign), April 1977.




——

14.

15.

16.

17.

18.

19.

20.

Zils

22.

23.

24.

25

26.

27.

30

Wulf, W. A., and R. Levin (eds.), "The Message System,"
in The Hydra Operating System, Department of Computer Science,

Carnegie-Mellon University, Pittsburgh, June 1975, pp. 93-118.
Data Disc, Inc. Notes on Event Channels for UNIX, 1976.

Anderson, R. H., and J. J. Gillogly, Rand Intelligent

Terminal Agent (RITA) Design Philosophy, The Rand
Corporation, R-1809-ARPA, February 1976.

Zucker, Steven, Interprocess Communiation Extensions
for the UNIX Operating System: TII. Implementation,
The Rand Corporation, R-2064/2-AF, June 1977.

Gaines, R. S., "An Operating System Based on the Concept
of a Supervisory Computer," Comm. ACM 15, 3, March 1972,
pp. 150-156.

Metcalfe, R. M., "Strategies for Operating Systems in
Computer Networks," Proc. ACM Annual Conference,
August 1972, pp. 278-281.

Horning, J. J., and B. Randell, "Process Structuring,'" ACM
Computing Surveys 5, 2, March 1973, pp. 5-30.

Walden, D. C., "A System for Interprocess Communication
in a Resource Sharing Computer Network,'" Comm. ACM 15, 4,
April 1972, pp. 221-230.

Metcalfe, R. M., "Packet Communication," PhD Thesis,
Harvard University, December 1973.

Bobrow, D. G., et al., "TENEX, A Paged Time Sharing
System for the PDP-10," Comm. ACM 15, 3, March 1972,
pp. 135-143.

Postel, J. B., Survey of Network Control Programs in
the ARPA Computer Network, MITRE Tech. Report No. 6722,
October 1974.

Brinch Hansen, P., "The Nucleus of a Multiprogramming
System," Comm. ACM 13, 4, April 1970, pp. 238-241, 250.

Sorenson, P. G., "Interprocess Communication in Real-Time
Systems " Proc. 4th ACM Symp. Op. Sys. Principles,
Yorktowii Yeights, New York, October 1973, pp. 1-7.

Sevcik, K. C., et al., "Project SUE as a Learning
Experience," Proc. Fall Joint Computer Conf., 1972,
Pp- 331-339.




31

28. Morenoff, E., and J. B. McLean, "Inter-Program
Communications, Program String Structures, and Buffer
Files," Proc. Spring Joint Computer Conf., 1967, pp. 175-183.

29. Farber, D. J., et al., "The Distributed Computing System,"
Proc. IEEE Computer Society International Conference,
San Francisco, February 1973, pp. 31-34.

30. Holt, R. C., and M. S. Grushcow, "A Short Discussion of
Interprocess Communication in the SUE/360/370 Operating
System,'" Proc. ACM SI1GPLAN~SIGOPS Interface Meeting,
Savannah, Georgia, April 1973, pp. 74-78. Also SIGPLAN
Notices 8, 9, Sepember 1973.

31. Hoare, C.A.R., "Monitors: An Operating System Structuring
Concept," Comm. ACM 17, 10, October 1974, pp. 549-557.




